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Abstract. Using arecently introduced renormalisation group method, we study the behaviour 
of the spontaneous surface and bulk magnetisations as functions of the temperature for an 
king ferromagnet in a semi-infinite cubic lattice for variousJ,/JB ratios (1, andJB respectively 
are the surface and bulk coupling constants). In particular we study the extraordinary 
transition where the surface maintains its magnetisation as the bulk disorders; we find 
a discontinuity in the first derivative of the surface magnetisation at the bulk transition 
temperature. The criticality of the system (universality classes, critical exponents and ampli- 
tudes) is discussed as well. 

1. Introduction 

Surface magnetism has attracted considerable interest during recent years due to its 
various applications (catalysis, corrosion, etc.) and its intrinsic theoretical and exper- 
imental richness [ 11. Some experiments using techniques such as spin-polarised photo- 
emission [2], spin-polarised low-energy electron diffraction [3] and electron-capture 
spectroscopy [4] are able to probe the surface critical behaviour of systems such as Ni, 
Cr, Gd and Tb, showing that the local magnetisation at the surface behaves, near the 
bulk transition temperature TF , in a different way than the bulk magnetisation does. 
On theoretical grounds, surface magnetic order has been treated within different frame- 
works: the mean field approximation [5], effective field theories [6], Kikuchi-type 
theories [7], spin-fluctuation theories [8], the random-phase approximation [9], Monte 
Carlo techniques [lo] and renormalisation group (RG) [ l l ]  methods (see [12] and [13] 
for reviews of reciprocal-space and real-space approaches respectively). 

The RG techniques have been applied to semi-infinite magnetic solids usually to 
obtain critical exponents and phase diagrams [14,15]; they have rarely been used to 
calculate surface thermodynamic functions [14, 161. As far as we know, none of these 
techniques has yet been performed to obtain the surface magnetisation as function of 
the temperature; i.e., the equation of state. Recently, a real-space RG formalism was 
introduced [ 171 which allows the direct calculation (without going through the calculation 
of the thermodynamic energy [B]) of the equation of state for arbitrary values of the 
external parameters. In this work, we apply an extension of this formalism to the non- 
homogeneous case [19] (where we allow for different coupling constants in the system) 
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Figure 1. Phase diagram for the Ising ferromagnet in the semi-infinite cubic lattice with a 
(001) free surface. In the bulk ferromagnetic (BF) phase both the bulk and surface are 
magnetically ordered; in the surface ferromagnetic (SF) phase only the surface remains 
ordered; in the paramagnetic (P) phase both are disordered. 

to study the Ising ferromagnet in a semi-infinite cubic lattice with a free surface (001). 
In our calculations the free surface coupling constant Js(Js 2 0) can be different from 
the bulk coupling constant JB > 0. 

We obtain the surface and bulk magnetisation curves as functions of the temperature 
and we study their behaviour as Js / JB  varies. We also obtain the surface and bulk 
magnetisation exponents p and amplitudes A for the various types of transitions which 
may occur. 

In 0 2 we present the model and the formalism and in § 3 the results; finally, we 
present our conclusions in § 4. 

2. The model and RG formalism 

We consider a semi-infinite simple cubic lattice with a (001) free surface. The first- 
neighbouring sites interact according to 

x = - JijOiOj (ai = k1,Vi )  
(Li) 

where the coupling constant J ,  equals J s  (Js  2 0) if both sites i and j belong to the free 
surface and equals JB (JB > 0) otherwise (let us introduce A 

The phase diagram for this system is known to be as indicated in figure 1. If A < Ac, 
for temperatures below the critical bulk temperature ( T  < T:) we have the bulk ferro- 
magnetic (BF) phase, where both the bulk and the surface are magnetically ordered; for 

Js/JB - 1). 
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T > TF , the bulk and the surface are disordered (paramagnetic (P) phase). If A > Ac, a 
third phase becomes possible at intermediate values of T, between the bulk ferro- 
magnetic and paramagnetic phases. At this region, for Tabove T: and up to T:(A), the 
surface remains magnetically ordered while the bulk order is absent (surface ferro- 
magnetic (SF) phase). 

It is known that this system is associated with several universality classes. To illustrate 
them, we recall the thermal critical behaviour associated with the magnetisation. The 
bulk magnetisation MB behaves near T:, for all values of A, as M B ( T )  - 
A3D(1 - T/T363D. The critical behaviour associated with the surface magnetisation M s  
is: (i) for A < Ac, M s ( T )  -AOrd(l - T/TF)pord; (ii) for A = Ac, M s ( T )  -ASP(l - 
T/T:)B"; (iii) for A > Ac, M s  - As(l - T/T:(A))p2D. We also expect a fifth non trivial 
singularity to be present in this problem: for A > Ac, M s  near T: behaves as 

A-(1  - T/T:>p'" 

-A+(T/T: - l )pe" 

for T+ T: - 0 

for T+ T: + 0, 

since it is reasonable that it reflects somehow the bulk singularity. 
To obtain the surface and bulk spontaneous magnetisations as functions of the 

temperature we will briefly summarize the RG method previously mentioned, while 
applying it to our system. 

We first consider a dB-dimensional bulk lattice of linear size L with a privileged 
surface in &dimensions, the dimensionless coupling constants being Ks = Js/kBT at 
this surface and KB = JB/kBT otherwise. We consider the special limit L + such that 
the privileged surface gives rise to a free surface in a semi-infinite lattice. In this limit, 
we define the bulk and surface order parameters as MB = NF(KB)/Ld~ and 
M s  = Nf(KB, Ks) /Lds  , whereNF(NL) is the thermal average number of bulk (surface) 
sites whose spin is pointing along the easy magnetisation direction minus those whose 
spin is in the opposite direction. We associate with each site of the semi-infinite lattice 
a dimensionless magnetic dipole p. We could in principle have a fixed p but we will 
rather leave it as a variable of the RG transformation, just as KB and Ks. 

We transform (following Kadanoff ideas) the original system into a similar one of 
linear size L' (I = linear expansion factor = L/L' > 1) with renormalised variables 
Kb , KA and p ' .  We impose the condition that through renormalisation, both the total 
bulk magnetic moment and the total surface magnetic moment must be preserved (since 
they are extensive quantities). We have, for the total bulk magnetic moment 

N?'(Kb)p' NF(KB)p7 (1) 

where the thermal averages N?, (KA)  and N E ( K B )  are to be taken over the bulk sites of 
our system. We have a similar equation for the total surface magnetic moment, which 
involves thermal averages such as N t ,  ( K b ,  K i )  and N t ( K B ,  K,) taken at the surface 
sites. We will work only with the bulk relation for simplicity and at the end we will 
recover the corresponding relation for the surface. 

Dividing both sides of (1) by L d e ,  we obtain: 

where MB(K;3)  = N ? , ( K ; j ) / L ' d ~ .  
At this point , it is worthy to discuss the connection between equation (2) and equation 

(2.64) of Niemeijer and van Leeuwen [18]. From a general expression for the free 
energy, they obtain the derivative of the free energy with respect to any odd-spin 
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coupling. In particular, considering the magnetic field h as the odd-spin coupling, they 
have an expression for the magnetisation which is written as a sum of terms corresponding 
to all renormalised couplings that have been generated. This expression is similar to our 
equation (2) for an approximate renormalisation group in which no odd-spin couplings 
(besides the magnetic field) are generated (the summation then reduces to one term). 
Furthermore, to compare equations (2) and (2.64) we should identify p ' /p  = ah'/ah. 
However, we note that the assumptions we used to obtain equation (2) are quite different 
from theirs. Let us stress that p is a variable introduced phenomenologically while h in 
[18] is a coupling which appears in the Hamiltonian. Let us anticipate here that the 
approximate RG we use preserves the two-body correlation function in a graph (see 
[21]). This is not strictly the same as to preserve, within some approximation, the 
partition function of the system [MI. In our case it is frequently possible to work in a 
closed parameter space. 

Starting with KB and p(O), let us now perform n iterations in (2), which leads to 

M B ( K t ) ) p ( n )  = IndBM B (KB ) i u ( O )  (3) 
In the n -+ CQ limit, arbitrarily choosing [19] ,do) = 1 we obtain 

Analogously, we also find a relation for the surface order parameter 

The equations (4a) and (4b)  are to be used together with the RG recurrence equations 
for Kk and Kk,  to be described further. For Ising ferromagnetic systems with a free 
surface, these equations will give rise to a phase diagram with three distinct regions, 
namely the P, BF  and SF ones (see figure 1). In the paramagnetic region, (KB, K,) is 
attracted through successive renormalisations towards (Kf) , = (0,O). Since 
M B ( K r ) )  = 0 and M s ( K r ) ,  K r ) )  = 0, we obtain (through (4a) a n j  (4b))  

MB(KB) = 0 (5a) 

MS(KB, KS) = 0 (5b)  

in the entire paramagnetic region, as expected. If (KB, K,) is attracted towards 
( K r ) ,  Kc")) = (CQ, a), which is associated with the bulk ferromagnetic phase, we have 
MB (KC)? = 1 and M s ( K r ) ,  K r ) )  = 1 (conventional value for the order parameters MB 
and M ,  when both the bulk and the surface are completely ordered). Then (4a) and (4b)  
give 

p ( n )  

MB(KB)  = lim -, (6a) 
n - t m  IndB 

for the bulk ferromagnetic phase. In the surface ferromagnetic region, (KB, K,) is 
attracted towards (Kf ) ,  K C ) )  = (0, CQ) which corresponds to the situation where the 
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Figure 2. RG cell transformation: (a )  associated with the bulk (coupling constant KB); (b)  
associated with the surface (coupling constant Ks).  The terminal sites are always denoted by 
1 and 2; the other numerical labels denote internal sites. The lattice generated by iterative 
application of graph GI is an example of hierarchical lattice. 

surface is completely ordered and the bulk disordered. Then we have M B  ( K r ) )  = 0 and 
M , ( K r ) ,  K r ) )  = 1 which yields, through (4a) and (4b) 

for the surface ferromagnetic phase. 
To close the procedure we must now specify how to obtain the RG recurrence relations 

for K B ,  Ks and p. 
Following the Migdal-Kadanoff scheme (which was first introduced to study the 

semi-infinite Ising model in [ 14]), we shall use the same simple cluster transformations 
already introduced in [15] for the Potts (and related models) surface magnetism. The 
cells for the bulk and the free surface region are shown respectively in Figures 2(a) and 
2(b). The transformation indicated in figure 2(a)  simulates, through the standard bond- 
moving procedure, the renormalisation of the bulk of our system. In the left hand side 
of this figure we show an intermediate step in the construction of the final graph: a cluster 
composed of eight cubes in which the horizontal bonds have already been moved, and 
the sites at the top and at the bottom of the cluster have been collapsed into two terminals. 
In figure 2(b) the transformation is of the same type: the larger cell is assumed to lay on 
the free surface of our system in such a way that 4 of its initial 27 bonds are outside the 
semi-infinite lattice, and therefore 9 bonds are absent. 



10134 A Chame and C Tsallis 

At this point, we shall remark that as we are in fact approximating a Bravais lattice 
by hierarchical ones (see caption of figure 2) the factors l d ~  and I d s  in equations (6) and 
(7) must be replaced [20] by ldkb' and I d i b ' ,  which will be defined in what follows. 

For the transformation of figure 2(a), in which all the couplings constants are the 
same (homogeneous case, i.e. KB = Ks) ,  ldkb' is given by [17] 

where Nbl and Nb; are respectively the number of bonds of graphs G1 and G; (which 
have chemical distances bl  and b ;  between their terminals). 

For the transformations of figure 2(b) (inhomogeneous case) where we have arbitrary 
KB and Ks,  definition (8) has been extended [19] into 

where NE2 and Ng2 (NE; and N&) are the numbers of bonds of graph G2( G;) respectively 
associated with KB and Ks (KA and K & ) 7  and b2(b;)  is the chemical distance between 
terminals in the graph. Definition (9) is the simplest continuous expression which 
recovers the homogeneous definition (8) in the particular cases (KslKB, K ; / K b )  = 

Let us come back to the determination of the KB, Ks and p recurrences relations. 
We impose that the correlation function between the two roots of the graphs G1 and 
Gi (G2 and G;) must be preserved, i.e. (see, for instance, reference [21]), 

( O , O ) ,  (1, 01, (07 1) and (1,1). 

with 

-PXg,,  = K ~ c T ~ o ~  + Kg?  

(associated with graph Gi)7  

- P x B 1 2 3 . , , 2 0  = K B ( 0 1 0 3  + 0 1 ° 5  + OIu7 

+ 0402 + 6 6 0 2  + 0 8 0 2  + .  . 
(associated with graph Gl),  

-pXk, ,  Kk0102 + KO,, 

(associated with graph G;) and 
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(associated with graph G 2 ) .  Kg and Kg are two constants to be determined. Equations 
(10) and (11) uniquely determine 

Kk = K K B  > (13) 

Kk = g(KB , KS)* (14) 

and 

Following [ 171, we will now establish the recurrence equation for ,U. In order to break 
the symmetry (a condition needed for establishing the equations for the order parameter) 
we impose that in all graphs of figure 2 one of the terminal spins, say spin 1, is fixed. 
We consider all possible configurations for the other sites and associate with each 
configuration the corresponding Boltzmann weight and magnetic moment. We obtain 
the magnetic moment m associated with a given configuration adding all sites con- 
tributions. In the homogeneous case (Ks /KB = 1) we know that each site contributes 
proportionally to its coordination number [17]. This is due to the fact that we are 
approaching a Bravais lattice (translationally invariant and consequently having a spa- 
tially uniform order parameter) by a hierarchical one (scale invariant and having a non 
uniform order parameter in space). In the non-homogeneous case ( K ,  # KB) each site 
contributes proportionally to its average coordination number, which is defined by 
attributing to each bond a weight proportional to its coupling constant (this is the simplest 
continuous definition which recovers that of the homogeneous case for K,/KB = 1). 
This definition has already been tested for the Potts ferromagnet in anisotropic square 
lattice [19], yielding results in good agreement with other calculations. In table 1 we 
present, as an example, a few configurations for graphs GI and Gi (associated with the 
bulk, where we only have the coupling constant KB). In table 2 we illustrate the same 
procedure for graphs G 2  and G;, which are associated with the surface, where we have 
both coupling constants KB and Ks. Finally we impose, as we did in equation ( l ) ,  that 
the thermal average total magnetic moment in the original and renormalised clusters is 
preserved, for both the bulk and surface RG transformations respectively: 

(m)G1 = (m)G; (15) 

(m)Gz = (m>Gi (16) 

These equations have the form 

as we can see inspecting tables 1 and 2. Equation (17) must enter into equation (6a), 
while equation (18) must enter into equation (6b) and equation (7b). 

Summarising, we use equations ( 5 ) ,  (6), (7) together with equations (13), (14) 
and (17), (18) to obtain the surface and bulk spontaneous magnetisations. For the 
transformation of figure 2(a), l d f '  = 27 (homogeneous case) and for the one of figure 
2(b), Id?" = (9 + 9Ks /KB ) / ( K & / K k )  (non-homogeneous case). 

3. Results 

The curves we have obtained for the surface spontaneous magnetisation for J , / J ,  = 
0,0 .5 ,1  and 1.5 are presented in figure 3. We also present the curve for the bulk 
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G; configuration 

A Chame and C Tsallis 

Weight m 

Table 1. Establishment of equation (15) for the bulk RG transformation. (a) Possible con- 
figurations for the graph G;; (m)G; = eKB 2&/(e% + e-%). ( b )  Three of the 219 possible 
configurations for the graph GI;  (m)G, = (54e27K~ + 50e23K~ + 32e% + . . .) 
pB/(e27K~ + + e% + . . .). 

(61 

GI configuration 

9 

Weight m 

spontaneous magnetisation. Since A < Ac (Ac = 0.74 in the present RG procedure [15]), 
the surface and bulk order at, for decreasing temperatures, the same temperature TF 
(ordinary transition). We observe that the surface magnetisation curve, as A is increased, 
gradually approaches the bulk one and, for A 5 Ac, it lays above this curve. 

If A = Ac, the surface still disorders at the same temperature TF than the bulk, but 
this transition (special transition) is characterised by a different set of critical exponents. 
The corresponding surface magnetisation curve is presented in figure 4 with the bulk 
curve. 

In figure 5 we present the surface magnetisation curves forJs/.TB = 2 , 2 . 5  and 3; these 
values of Js /JB correspond to A > Ac. In this case the bulk orders in the presence of an 
already ordered surface. We have the surface transition at TS(A) > T: from a ferro- 
magnetic surface phase to a paramagnetic phase and the extraordinary transition at 
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( a )  
G; configuration Weight 

Table 2. Establishment of equation (16) for the surface RG transformation. (a )  Possible 
configurations for the graph Gi; ( w z ) ~ ;  = eKs 2pLg/(eKs + e-%). (b )  Three of the 213 possible 
configurations for the graph Gz; ( w z ) ~  = (e9K~+9Ks(18 + 18Ks/KB) + eYK~+%(18 + 14 
K,/K,) + e3%-%(12 + 8Ks/KB) + . . . jps/(e9K~+9Ks + e y K ~ + 5 K ~  + e 3 K ~ - K ~  + . . .). 

m 

G, configuration Weight 
I 1 t t 

I I 

t 

I I 

TF , where the surface magnetisation curve is believed to present some kind of weak 
singularity. We obtain that the temperature first derivative of the surface magnetisation 
is discontinuous at T: , and that just above T: the tendency of the surface to disorder is 
weaker than just below. This result might surprise at first sight since we know that bulk 
order must enhance surface order. We verify that pex = 1 and that A - / A +  is roughly 
equal to 4, for typical ratios of Js /JB.  Mean-field (MF) theories [5] for the extraordinary 
transition give 

m = 1 . - L  zt - t i 2  + o ( i 3 1 ,  

m = 1 - '  zt- hi2 + 0(i3), 
i> 0 

i< 0 

with m cc M s  and fcc  ( T  - T F F ) ,  i.e., the leading singularity would occur at O ( t 2 )  (the 
discontinuity only appears in the second derivative at i= 0). Bray and Moore [ 5 ]  define 
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M 

1 2 3 0 ,  

k, T /J ,  

Figure 3. Surface spontaneous magnetisation M s  as a function of the temperature for the 
king ferromagnet in a semi-infinite simple cubic lattice with free surface (001). Js /JB = 0, 
0.5, 1 and 1.5 (A < A J .  The bulk magnetisation ME is also shown as a reference. 

M 

0 1 2 3 

k,T/J, 

Figure 4. Surface magnetisation M ,  as a function of the temperature for A = Ac. The bulk 
magnetisation M, is also shown. 

a /3-exponent (/37 according to their notation) which is identified with the exponent of 
the term which presents the singularity. They find pp = 2 (as we have found different 
amplitudes above and below T," for the linear term, we have /3p = /P = 1). Based on 
scaling arguments, Bray and Moore state that the singularity in the surface magnetisation 
is identical to that in the bulk free energy (hence it is valid outside mean-field theory) 
and consequently = 2 - a, where a i s  the bulk specific heat exponent. Giving support 
to the possible continuity, at T," , of the first derivative of M,( T ) ,  there are also exper- 
imental data of Rau and Robert [4] in Gd (which seems to be close to a Heisenberg 
ferromagnet). On the other hand, a result similar to ours has been obtained, using 
RPA, for a Heisenberg semi-infinite ferromagnet [9]. Also effective field theories with 
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M 

0 1 2 3 4 

k,T/J, 

Figure 5 .  Surface magnetisation M ,  as a function of the temperature for A > Ac; J s / J B  = 2, 
2.5 and 3. At T: there is a discontinuity in the first temperature derivative of Ms.  The bulk 
magnetisation M B  is also shown. 

correlation have suggested a discontinuity of the first derivative of M,(T)  at T: for an 
Ising model and for this model in a transverse field [6]. Furthermore, there are accurate 
experiments [22] measuring surface tension at the A transition on liquid 4He (whose 
criticality is expected to be the same as that of some surface magnetic systems), which 
suggests a discontinuity in the first derivative, conflicting with some theoretical pre- 
dictions for the system. The point is still controversial. Let us present some qualitative 
arguments which could enlighten the cause of what we find, i.e., a discontinuity in the 
first derivative of M,(T). The bulk acts on the surface magnetisation through two 
different physical channels. The first one is the obvious fact that the bulk magnetisation, 
as long as non-vanishing, acts as an effective field on the surface. The second channel, 
more subtle, refers to bulk susceptibility effects near T:, where the bulk susceptibility 
diverges ( x ( T )  - C-(1 - T:)-y for T 4  T, - 0 and x ( T )  - C+(T/T: - l ) - Y  for 
T+ T, + 0). In the neighbourhood of T: , the paramagnetic-side amplitude of the bulk 
susceptibility (C,) is greater (two times greater in standard mean-field calculations) than 
that of the ferromagnetic-side bulk susceptibility (C-). The effect of the paramagnetic- 
side bulk susceptibility might overcome both the effects of the vanishing bulk field and 
of the bulk susceptibility just below T:. This suggests an explanation for the decrease in 
the tendency of the surface to disorder in the region just above T: (i.e. , A -  > A + ) .  The 
fact that mean-field calculation yield A +  = A -  would be fortuitous and possibly related 
to the factor 2 mentioned above. Our results are in disagreement with those obtained 
by Bray and Moore [ 5 ] ,  where some scaling arguments have been assumed. 

The present RG formalism yields the values of T: , T : ( A )  (through the recurrence 
relations for KA and Kk in the standard way), the ,6 exponent for each transition and the 
corresponding amplitude A .  They are shown in table 3 and compared with other esti- 
mates whenever available. 

Let us mention an unexpected feature which appears as Js /JB decreases, for Js / JB  < 
1: a slight non-monotonicity of the surface magnetisation. We expect [25] that, for a 
given value ofJs/&, we must always have a surface magnetisation curve which is below 
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Table 3. Present RG values for the critical temperatures, exponents P and the corresponding 
amplitudes A for each transition. Other estimates are also shown whenever available. 

Bulk magnetisation 

P3D keT,BIJs A J D  

0.46 (present RG) 2.82 (present RG) 1.24 (present RG) 
0.3 1224 2.3062 (Seriesz3) - 

Surface magnetisation 

Ordinary transition 

Pord J S I J B  A o r d  

0.55 (present RG) 0.5 1.1 
0.78 (Monte Carlo") 1.0 1.2 
0.82 ( E  expansion") 1.5 1.8 

Special transition 

p " p  J S I J B  ASP 

0.21 (present RG) 
0.175 (Monte Carlolo) 1.6 (Series") 0.6 
0.25 ( E  expansion") 

1.74 (present RG) 

1.5 (Monte Carlo'") 

Surface transition 

~ 

0.17 (present RG) 2 3.03 0.8 
0.125 (exactz3) 2.5 3.61 0.92 

3 4.26 0.96 

Extraordinary transition 

P J S l J B  A -  A +  

1.0 (present RG) 2 3.0 0.8 
1 (Mean field') 2.5 1.1 0.3 

3.0 0.6 0.17 

the one associated with a greater value of J,/JB. Instead of that, at J,/JB = 0.35 we find 
that the surface magnetisation begins to increase, as Js /JB is lowered. We can see in 
figure 3 the surface magnetisation curve for J,/J, = 0.5 which is below the curves for 
Js/JB = 1 and 1.5, as expected. But the surface magnetisation curve for Js / JB  = 0, for 
instance, is aboue the Js/JB = 0.5 one. This regime change at J,/JB = 0.35 is directly 
connected with a RG flow regime change in the corresponding phase diagram. Indeed 
the flow line connecting the BF and P phases attractors as well as the fixed point which 
lies on the P-BF critical frontier precisely corresponds to Js / JB  = 0.35. As we are using 
an approximate RG procedure, this effect could be a spurious one. 
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4. Conclusion 

A real-space RG scheme has been applied to the Ising model in a semi-infinite cubic 
lattice in order to obtain the equations of state for this system. The surface and bulk 
spontaneous magnetisation curves as functions of the temperature present the quali- 
tative behaviour expected for A < Ac, A = A, and A > Ac. We find for the extraordinary 
transition (A > Ac) the critical exponent Pex = 1 and a discontinuity in the first derivative 
of the surface magnetisation. This last result differs from the mean-field prediction 
(continuity in the first derivative). Bulk susceptibility effects on the surface at TF may 
explain this discrepancy since mean-field theories do not properly take into account 
fluctuations. At  the light of our renormalisation-group results for an Ising ferromagnet 
we see that the result A + / A -  = 1 experimentally obtained by Rau and Robert might 
either be due to the fact that Gd seems to be closer to a Heisenberg ferromagnet 
than to an Ising one, or it should not be considered the generic situation, and its 
comprehension should be searched elsewhere. To clarify this point, it would be inter- 
esting to study, within the present RG scheme extended to quantum systems [26] or 
some other technique, the anisotropic Heisenberg model with particular focus on the 
Heisenberg t, Ising crossover. 

In the vicinity of the various critical temperatures we have obtained the cor- 
respondent @ exponents (according to what is expected on the basis of universality 
arguments) and amplitudes A in reasonable agreement with other estimates whenever 
available. 
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